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The multiple-scattering theory for wave propagation in a medium with spherical inclusions is
examined for the case where these exhibit liquidlike correlations. By adopting graphical methods
previously employed in the context of disordered tight-binding models, the determination of the
ensemble-averaged amplitude (one-particle) Green function is reduced to the solution of two central
equations. One of these is an operator analog of the Ornstein-Zernike (OZ) equation of liquid-
state theory. The other describes the self-consistent determination of an effective single-scatterer
T matrix. This formalism leads naturally to the definition of a direct and a total propagator, the
former being identified with what is generally termed the medium propagator. It is demonstrated
that a number of existing theories may be derived as closure approximations to the (exact) pseudo-
OZ equation. By generalizing previous treatments of a given (effective medium) approximation, it
is then shown how the intensity (two-particle) Green function may be derived in a manner that

ensures energy conservation.

PACS number(s): 42.25.Bs, 78.20.Dj, 61.20.Gy

I. INTRODUCTION

The propagation of classical waves in random media
has attracted considerable attention recently [1,2]. Much
of this interest has been motivated by the search for An-
derson localization [3-5], especially in the case of light
waves, where its realization promises a variety of novel
technological applications [6]. From the point of view
of establishing contact with theoretical predictions, An-
derson localization of light has the advantage of being
uncomplicated by competing mechanisms: in the elec-
tronic context electron-electron and electron-phonon in-
teractions cannot be ignored [7]. On the other hand,
while localization of electrons in low-energy band tails
is in some senses ubiquitous, this (low-frequency) limit
is accompanied by a vanishing of the scattering “poten-
tial” for light waves [8]. The opposite high-frequency or
geometrical-optics limit also yields no localization, which
is expected to occur in some intermediate-frequency win-
dow. This forces us to study a regime in which the wave-
length may be comparable with the scale of structural
correlations in the medium [8]. Any theory should there-
fore take adequate account of such structure. For discrete
random media, which are of interest here, this informa-
tion is contained in the n-particle distribution functions
p™(Ry,...,R,),n=1,...,N, where N is the number
of particles (i.e., scatterers) in the system. In general,
the p(™ depend also on the orientation of the particles,
but, for simplicity, we will assume each scatterer to be
spherically symmetric.

In order to study localization, we require a theory
for the intensity or two-particle Green function, aver-
aged over allowed configurations of scatterers. In par-
ticular, we should exclude cases where the scatterers
overlap. Clearly this constraint introduces complications
and, in order to make some headway, many authors [9-12]
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have considered point-scatterer models, for which posi-
tional correlations are absent. Such models allow one
to study what may be termed dependent scattering ef-
fects, i.e., how the scattering efficiency of a given par-
ticle is modified by multiple scattering from the other
particles. The net effect is generally an increase in the
mean free path associated with wave propagation, above
that predicted by a single-scattering treatment. Unfor-
tunately, correlations between the scatterers give rise
to similar effects, as demonstrated by the correlation-
corrected single-scattering calculations of Saulnier et al.
[13]. What is required is a formalism that treats both
multiple scattering and correlations on an equal footing.
The present paper provides one such formalism. In an-
other paper we shall go on to exploit this in the case
of isotropic scatterers. In particular, we will show how
liquid-state methods may be used rather directly in ob-
taining the one-particle Green function. This yields an
explicit solution for a simple (step-function) model of pair
correlations and numerical results for more realistic cor-
relation functions.

A large part of what appears here concerns the calcu-
lation of the averaged amplitude Green function in me-
dia whose constituent particles exhibit correlations of a
liquidlike nature. The types of system we have in mind
are colloidal suspensions or similar systems in which the
liquidlike structure has been quenched in by, for exam-
ple, some kind of gelation process. Whilst the amplitude
Green function does not, in principle, yield information
about localization, it forms an essential ingredient in any
theory for the intensity Green function.

A great deal of insight has been gained in the study of
disordered conductors by appealing to the predictions of
tight-binding (TB) models [14]. The applicability of such
an approach for classical waves is still far from clear, the
principal difficulty being that, for the latter, the physi-
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cally relevant regime corresponds to the positive-energy
continuum [8]. Hence there are no true bound states to
associate with each particle, only resonances.

Recent classical-wave band structure calculations
[15,16] have established some correspondences between
such single-scatterer resonances and the positions of band
gaps, at least in the case of scalar waves [17]. For low
packing fractions 7 of scatterers the midgap frequencies
coincide with the resonances. However, as 7 is increased
the gaps tend to move between the resonances. Datta
et al. [15] suggest that, for small 7, wave propagation is
predominantly through the host medium, with the scat-
terers serving to impede the motion. For large 7 one
may visualize propagation in terms of a hopping between
overlapping local resonant states.

This picture has considerable appeal, although at
present it is not clear how one may put it to work in
the form of a TB model. Based on the intuition gained
from studying electronic systems, one would expect such
an approach to be valid for narrow bands with wide gaps.
At present it seems that this requirement is most likely
to be met in acoustic systems, for which one may tailor
both the velocity and impedance mismatch [16] between
host and scatterer.

In the absence of any obvious prescription for inter-
preting the results of TB calculations in the context of
classical-wave systems, let us choose instead a multiple-
scattering approach. Fortunately, for the liquidlike sys-
tems that concern us here, many of the diagrammatic
methods employed for disordered TB models may be car-
ried over. In particular, the multiple-scattering formal-
ism for the configurationally averaged amplitude Green
function may be recast in a form that resembles a liquid-
state theory. Logan and Winn [18] established an equiva-
lent reformulation for a disordered single-band TB model
and later extended this to multiple-band systems [19].
Their analysis in turn employed methods developed by
Wertheim [20] for determining the dielectric constant of a
nonpolar, polarizable fluid. The relation between this lat-
ter problem and multiple-scattering theory has not gone
unnoticed in the literature [21]. However, the utility of a
liquid-state theoretic approach appears not to have been
explored before.

In this paper it will be shown that the Logan-Winn
formalism leads naturally to theories for the amplitude
Green function (e.g., the effective-medium approxima-
tion (EMA) of Roth [22,23]) for which the self-consistent
equations involve only “on-shell” quantities. The for-
malism presented here is developed for classical scalar
waves. Its generalization to the case of electromagnetic
waves is straightforward, but requires some extra book-
keeping. The reader is referred to the paper by Davis and
Schwartz [21] that discusses the quasicrystalline approx-
imation (QCA) [24,25] and the EMA [22,23,26] for light
waves in a notation that closely resembles the present
one.

The remainder of the paper is arranged as follows. Sec-
tion II sets up the multiple-scattering theory for the am-
plitude Green function in terms of the medium path op-
erator. It is this quantity that corresponds to the average
Green function in the TB language. Hence the topologi-
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cal analysis of the diagrams contributing to this may be
achieved by direct translation from the paper by Logan
and Winn [18]. However, the fact that we are now dealing
with operators means that some additional work needs
to be done to put the equations in a form suitable for
calculation. In an angular momentum representation the
central equations (which must be solved self-consistently)
are shown to be reducible to an on-shell form. Off-shell
quantities are not involved in the self-consistency and
may be calculated once their on-shell counterparts have
been found.

The above decoupling of the on-shell terms relies on the
satisfaction of a nonoverlapping condition [27-29]. Sec-
tion IIT shows how the Logan-Winn formalism, in which
approximations are introduced as closures of an Ornstein-
Zernike-like integral equation [30], may be used to guar-
antee this.

Section IV considers how to extend these ideas to the
calculation of the intensity or two-particle Green func-
tion. Roth and Singh [31] and also Itoh et al. [32-34] have
employed a “variational derivative” approach that allows
this quantity to be determined, given its one-particle
counterpart. Their treatments were for two specific theo-
ries of the amplitude Green function, viz., the quasicrys-
talline approximation with coherent potential (QCACP)
(35,36] and the EMA. Using the present formalism, an
analogous approach is applied, valid within any “closure”
approximation for the amplitude Green function. Of par-
ticular significance for classical waves is that the energy
conservation law differs from that for Schrodinger waves.
It is verified for the EMA and a slightly more elabo-
rate approximation, which includes repeated scattering
between pairs of scatterers, that the above scheme gen-
erates theories that are consistent with this conservation
law.

Finally, Sec. V provides a brief summary and draws
some conclusions.

II. MULTIPLE-SCATTERING FORMALISM

This section provides a formal analysis of the multiple-
scattering theory for the amplitude Green function, aver-
aged over the ensemble of possible configurations of the
scatterers. By selective resummation of certain classes
of diagrams it is shown how this may be rewritten to
resemble a liquid-state theory. This leads to a natural
distinction between a direct and a total propagator. It
also yields an expression for the renormalized (or loop-
corrected) T matrix of a single scatterer, the form of
which, it will be argued, should be preserved in develop-
ing new approximations. This feature is shared with the
treatment of Lloyd [27], although his expression involves
the bare reaction matrix rather than the 7" matrix.

Consider a system of identical discrete spherical scat-
terers of dielectric constant ¢(w)eo(w) embedded in a host
medium characterized by ep(w). For a given configura-
tion we may write, for the (unaveraged) Green function
(with a dependence on frequency w understood),
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G(r,r') = Go(r — 1')
+/dl‘1dl‘2G0(l’ - rl)T(rl,l‘z)Go(l‘z - I'I),
(1)

which serves to define 7 (ry,rz) the random T matrix for
the whole system. The host Green function Go(r — r')
satisfies

[V2+ k%] Go(r —1') = 6(r — 1), (2)

with the wave number k£ in the host medium given by
k? = €o(w)(w?/c?), c being the free-space phase velocity.

The spirit of the multiple-scattering approach is to ex-
pand 7T (ri,r2) in a series of terms representing single
scattering, double scattering, etc. For this purpose it is
convenient to employ an operator notation, in terms of
which Eq. (1) becomes

é = éo + GA()7A-GA0. (3)

G(r,r’) may now be identified with the matrix element
(r|G|r') and so on.

Consider now the scattering path operator [37] Tag.

This acts on the wave incident at scatterer 3 (located at

Rg) and provides the wave scattered from scatterer «,

incorporating all intermediate (multiple) scattering. It
may be expanded as

tg = fa(sag + (1 — (Saﬂ)fjaGAotAg
+ Y taGotyGotg + -, (4)

Y#Fa
Y#B

where t, = #(R,) are (bare) single-scatterer T matrices.
Each describes the scattering from an isolated scatterer
embedded at position R, in the host medium. Let us
assume, for the moment, that these are known quantities.
In fact, for many purposes it suffices to know only their
“on-shell” parts, which may be calculated via standard
phase-shift methods [38,39]. The total T matrix T is
obtained from 7;5 by summing over all possible initial
and final scatterers a, 3. ) .

For the ensemble-averaged Green function G = (G) we
may adopt a similar approach:

é = éo + éoféo. (5)
The average total T matrix may be expressed as

T=(T)= / dR4R'#(R — R'), (6)

with the medium path operator [23] #(R — R') defined
via

#7(R-R') = <Z S(R — Ry)Tapd(R’ — Rg)> . (7

a,B

Before proceeding further, let us make precise what
is meant by the ensemble average of some function
f(Ry,...,R,) of n < N of the positions of the parti-
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cles in the system. This is defined via

(f)y = Z;l/.../de...dRNfe_q’N(Rls-nyRN)/kBT7

(8)

where T refers here to the temperature, kg is Boltz-
mann’s constant and the configurational integral Zy is
given by

ZN :/.../de...dRNC—én(Rl,-..,RN)/kBT_ (9)

Here the N particles of the system are assumed to inter-
act via a potential ®n(Rq,...,Ry). While it is often
convenient to approximate this by a sum of pairwise ad-
ditive potentials, this is not a necessary restriction as
regards the present formalism. The following discussion
will focus on the limit N — oo, V. — oo, where V is
the volume of the system, such that N/V = p, a con-
stant number density of scatterers. This, together with
the assumed absence of an external potential, leads to
a macroscopically homogeneous system and permits us
to write R — R’ as the argument to the medium path
operator.

A multiple-scattering expansion of 7(R — R’) involves
the distribution functions

p(n) (Ra Rly ceey R‘n-—27 RI)

N!

(N —n)!

. <z’---2’5(R—Rm>---a(R' —Ran>>,

n=1,...,N, (10)

where the primes on the summation indicate that no two
indices a; are equal. Note that in the limit N — oo we
may replace N!/(N — n)! by unity.

The structure of this series becomes clear if we adopt
a diagrammatic approach. Significant in this treatment
is the fact that the corresponding graphs are composite,
comprising a part that describes the multiple-scattering
path (represented below by a continuous “chain”) and a
part that reflects the scatterer correlation. The topologi-
cal analysis of such graphs has been considered previously
by Wertheim [20] in the context of determining the di-
electric constant of a nonpolar fluid. These ideas were
subsequently employed by Logan and Winn [18] to study
the density of states of a disordered tight-binding model.
The adoption of such methods in the present case simply
requires the identification of a set of rules for interpret-
ing the diagrams. Since the topological arguments are
well documented, their description here will be reason-
ably brief.

At this point it is helpful to separate 7(R — R’) into
diagonal and off-diagonal parts

#(R - R') = pf"™(R)§(R — R) + 7op(R — R'), (11)
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thereby defining a renormalized single-scatterer T' matrix
™ (R),

pt™(R) = <Z SR — Raﬁ;a> , (12a)
#op(R —R/)
= <Z S(R —Ry)Top(1 — 8up)d (R — Rﬁ)> .
a,B
(12b)

For the sake of clarity, in what follows the shorthand
R, = a, dR, = d(a) will be used.

Consider now the multiple-scattering series for
’f‘()D(Rl — Rz) = +0D(1,2). For each term of nﬁ that
involves s distinct scatterers the averaging procedure in-
troduces a factor of p(®)(1,2,...,s) = p®gs(1,2,...,5),
where g, is the normalized s-particle distribution func-
tion. It follows that we may write

fon(1,2) = Pa(1, 27 P(1,2) + 3 ['an(1,2,0..09)
8=3

x#()(1,2,...,5)d(3) - --d(s), (13)
where 7(2)(1,2,...,s) is the sum of all terms appearing
in 712 that involve s scattering centers. The graph-

theoretical analysis of fop(1,2) now parallels that of
Wertheim [20] and Logan and Winn [18]. The essential
difference between these papers and the present treat-
ment is that we are now considering operators that act
on the wave coordinates. It is this feature that makes
it convenient to work with the scattering path operator
rather than directly with the Green function G.

Central to the aforementioned analysis is the result
from liquid-state graph theory that

0L, ,9) =TT TT 11 +7%(@0l (14)

t=2 all Q.

Here @ refers to a particular combination of ¢ points,
chosen from 1,2,...,s, and v;(Q¢) are so-called direct
connectors to be described below. Stell [40] provides a
derivation of Eq. (14) for a pairwise additive potential

Yo ¢a(e,B).

1<a<pB<N

®n(1,...,N) = (15)

In fact, his treatment remains valid even in the presence
of an external potential Vext = Y ;cqcn $1(@), at the
cost of introducing a position-dependent singlet density
pD(R) = (¥, (R - Ro)).

In the discussion that follows it is helpful to bear in
mind a number of concepts from graph theory. For fur-
ther details the reader is referred to Wertheim [20], Stell
[40], and Mayer and Mayer [41]. The points appearing
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in a given graph fall into two categories: root points and
field points, the latter representing coordinates that are
integrated over. A one-articulation point (1AP) is de-
fined as a point & which, when removed, causes the graph
to separate into two or more pieces, at least one of which
contains no root points. Each graph of field points so
detached is termed a one-articulated subgraph (1ASG).
In what follows the term simple will be used to denote
a graph in which, between every pair of adjacent points,
there is only one path that consists of a single bond. As
mentioned above, the graphs appearing in fop(1,2) are
composite since they involve bonds relating to the cor-
relation functions together with the propagators of the
multiple-scattering series.

We will not consider in any detail the construction
of g4(1,...,s) from more fundamental constituents since
this is the domain of liquid-state theory. However, it does
seem desirable to clarify the meaning of the direct con-
nectors . (Q:). For a potential of the form given in (15),
~¢(Q¢) is defined as the sum of all distinct simple graphs
with t root points labeled by members of the set Q; and
at least one field point. These are connected via Mayer
f bonds

f(a, ,8) = ¢~ 92(a.B)/kBT _ 1 (16)

such that every graph is free of 1APs. In addition, every
field point is connected to every root point by at least
one path that does not pass through any intermediate
root points. Also, there is no single-bond path between
any pair of root points.

As Wertheim [20] points out, Eq. (14) is valid for po-
tentials that include n-body terms, with n > 3. In that
case the direct connectors «;(Q;) will involve n-body gen-
eralizations of the f bond (see the work of Mayer and
Mayer [41]). Rather than dwell on the details of these
correlation graphs, let us assume henceforth that the v,
are known.

Turning now to the multiple-scattering graphs, the first
few (chain) diagrams contributing to 7(*)(1,...,s) for
s = 2,...,5 are given in Fig. 1. They correspond to
what Frisch [42] terms “half-dressed” diagrams (see Fig.
2), where repeated visits of the multiple-scattering chain
to a given site are represented by “links.” In his nota-
tion, “fully-dressed” diagrams are formed by the incorpo-
ration of correlation connectors. In the expansion of the
self-energy, these latter quantities are constructed from
short-ranged correlation functions h4(1,...,s).

Rather than repeat the formal analysis of 7op(1,2),
which parallels that for the quantity A(R,R’) in
Wertheim’s paper [20], it seems more helpful to provide
some examples. Consider the graph of Fig. 2(a). Associ-
ated with this is a factor p®gs3(1,2,3). Now by Eq. (14)
we may write

93(1’ 2’ 3) = 92(17 2)92(17 3)92(233)[1 + ’73(17 2a 3)]
= 92(1,2)g2(1, 3) + 92(1,2)g2(1, 3) h2(2, 3)
+92(1’2)92(173)92(273)73(1’273)a (17)

where h3(2,3) = g2(2,3) — 1 = 7,5(2,3). If we take the
first term on the right-hand side of this expression it is
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FIG. 1. Graphs appearing in 'F'(‘)(l, ...,8)fors=2,...,5.
The rules for interpreting the diagrams are #() for each stage,
i.e., each association of a chain with a given point «, and Go
for each portion of chain (bond) connecting two stages. Field
points will be integrated over after multiplication by a suitable
correlation graph.

easy to see that the associated graph (Fig. 3) is reducible
via a suitable cut at 1. This separates the graph into
two pieces since there is no direct v connector between
points 2 and 3. The fragment containing points 1 and 3
involves a scattering path (chain) that begins and ends
on the same scatterer, 1. It therefore contributes to the
renormalized T' matrix £(™)(1).

We may employ a similar analysis with the graph in
Fig. 4. With the aid of Eq. (14) it is possible to identify a
term g2(1,2)g3(1,3,4) in the expression for g4(1,2,3,4).
The associated Top(1,2) graph is seen to be reducible
via a maximal cut at 1, i.e., a cut that leaves the largest

(a) 3 (b)

;Ag132

FIG. 2. (a) Typical chain graph appearing in #3)(1,2,3)
and (b) equivalent “half-dressed” diagram in a notation de-
rived from that of Frisch [42].

FIG. 3. Reducible graph contributing to fop(1,2). The
dotted lines represent g2 bonds.

possible subgraph attached to root point 1. Once again
this subgraph gives a contribution to (™ (1). The re-
maining terms all involve direct connectors between 2
and members of the set of points (1, 3,4), which ensure
that the corresponding graphs appearing in ¥op (1, 2) are
irreducible.

In general we may identify 1ASG decorations of each
point, which may all be summed to give a renormal-
ized T matrix. In this way we may form Fop(1,2)
from graphs free from 1APs, but with each stage con-
tributing £(™) rather than . Now let us define a one-
chain bridge point (1BP) as a field point whose removal
causes the graph to fall into two pieces, one attached to
each root point. This allows us to identify a subset of
graphs which are free from 1BPs, whose sum is defined
by pt(™ (a)C(a, B)pt(™ (B). Such graphs will be termed
strongly irreducible.

Clearly, we may use the same chain graphs as Fig.
1 in constructing C(1,2) as long as we slightly modify
the rules for interpreting them. In particular, each inte-
rior stage now contributes £(™) and each end stage yields
1. Also a factor of p accompanies each field point. As-
sociated with each such graph is a sum of correlation
graphs, chosen to render the composite graph strongly
irreducible. )

Having identified C(1,2), it follows that fop(1,2) may
be written in the form

%OD(laz) = pf(m)(l)ﬁ(l,Z)pf(m)(‘Z), (18)

where
H(1,2) =C(1,2) +/é(1,3)p£<m)(3)l§r(3,2)d(3). (19)

The similarity between (19) and the Ornstein-Zernike
(OZ) equation [30] of liquid-state theory suggests that
C’(a,ﬁ) and ﬁ(a,ﬂ) be termed direct and total propa-
gators, respectively. In fact, é’(a,,@) may be identified
with the medium propagator discussed by a number of
authors [27,43,21,23].

An analysis of the diagrams appearing in the definition

1 2

FIG. 4. Chain graph contributing to #(*)(1,2, 3, 4).
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of £(™) () reveals that it satisfies

ﬂm@n=a®+ﬂm«o/ﬁum%dwwméwmﬁwy
(20)

In practical implementations of this equation Gy is gen-
erally expanded about the scattering centers o and 3 (see
below).

The operator equations (19) and (20) are exact and
in the present formalism constitute the central equations
of multiple-scattering theory. Let us consider how they
may be put in a form suitable for calculation.

For the systems of interest, the scatterers are identical
impenetrable spheres and so their closest distance of ap-
proach is d, the hard-sphere diameter. The implications
of this are well known (see, e.g., the work of Lloyd and
Berry [43]). In particular, it allows an effective refractive
index to be calculated using only the on-shell part of the
T matrices. In another context, viz., muffin-tin models
of liquid metals, it allows a similar on-shell evaluation
of the density of states via the so-called Lloyd formula
[44,27,45].

For the bare T matrix, the on-shell part is given (in an
angular momentum representation) by

trr (k, k)= ti(k)oLLs
- / dr / dr' ju(kr) Y3 (8)t(r, ') v (kr') Yo (),
(21)
where r and r’ are coordinates relative to the center of the
scatterer, j;(kr) are spherical Bessel functions, and Y7,(F)
are spherical harmonics, L = (I,m) being a composite
angular momentum label. A similar equation defines the
on-shell part of (™). The significant feature from a com-

putational viewpoint is that ¢;(k) may be determined by
standard phase-shift methods [38,39].

Consider now Eq. (20) for {(™)(a). Provided the scat-

terers at R, and Rg do not overlap we can expand Go
as

(r| Go|x') = Go(r,r)
= Gi(kra)Yi(ta)

L,L'

XxGY . (Ro — Rg)jv (krg)Yi (E5), (22)

where ro =T — Ry, 3 =1’ — Ry (see, e.g., [45]). Here

G%L' (Ra — Rﬁ)
= —4mik Y "' CEL b (k | Ra — Rg |) Yo (Ro — Rp),
LII
(23)
h{,(k|Ro—Rg |) being (outgoing) spherical Hankel func-
tions and CI{‘Z, Gaunt numbers, defined by

CLl, = / Yo (R) Y0 (%)Y (%)d, (24)

where the integral is over all solid angles.
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Writing now

(r| H(e,0) | ')

= Zj[(k?‘a)YL(f‘Q)HLLr(a,,@)jp(ka)YE: (f"ﬁ) (25)
L,L!
and
(r|C(a,B) | ')
= Y Gi(kra)Ye(fa)Crr (o, B)ju (krp) YL (£5),  (26)

L,L'

which serves to define Hyr/(a, ) and Crp/(a, ), it is
seen that

£ (k, k) = ™ (k)orL,
(k) = (k) +p 3 / t™ (k)H., (0, B)t{™ (k)
Ly

X G, (B, a)d(B)ti(k) (27)

and

Hiz(a,8) = Cr (e B) + 3 ot (k)
LII

X/Cu%mﬂHmvhﬂﬂH) (28)

The OZ form (28) is reminiscent of that for a fluid mix-
ture, with components labeled by L, etc. Winn and Lo-
gan [19] derived a similar equation for a multiple-band
TB model. For the case of a Yukawa hopping matrix
they were able to further exploit this analogy and ob-
tain, for the EMA, a solution in closed form. Unfor-
tunately, in the present case this approach is hampered
by the fact that Crr (e, 8) and Hrr: (o, ) depend on
the vector R, — Rg, rather than just its modulus. In
general, therefore, the solution of (28) requires rather in-
volved techniques [46—48]. For isotropic scatterers, how-
ever, such a vectorial dependence does not appear and
a “one-component” OZ equation obtains. A solution of
this problem, which exploits the liquid-state analogy, will
be presented elsewhere [49].

Note that Eqgs. (27) and (28) involve only on-shell
T matrices. This result is a consequence of the non-
overlapping condition imposed on the scatterers, which
implies

H(a,8) =0 for |Ry — Rg| < d. (29)

While this is clearly true for any exact treatment, which
incorporates all strongly irreducible diagrams contribut-
ing to C(a, B), it is not automatically satisfied in an ap-
proximate theory.

This problem, or its equivalent, was addressed by Lloyd
[27], who pointed out the need for exercising care in
choosing which terms to include in the series for C’(a, A).
Singh and Roth [28] later pointed out an error in his



prescription. They also noted that other, well estab-
lished, theories, such as the quasicrystalline approxima-
tion [24,25] and that due to Ishida and Yonezawa [50],
were also deficient in this respect. We consider this issue
in the following section.

III. CLOSURE APPROXIMATIONS

On a practical level, evaluation of the above resumma-
tion scheme requires the introduction of approximations,
not least because distribution functions g,(1,...,s) gen-
erally are only available for s < 2. A variety of approx-
imate multiple-scattering theories have been developed
over the years, via a number of routes. It is instructive
to consider how they relate to the present (OZ) formal-
ism. In particular, it will be shown that several of these
may be described in an extremely compact fashion as clo-
sure approximations to the pseudo-OZ equation (19), al-
though in most cases these are supplemented by indepen-
dent approximations for the renormalized T' matrix £(™),
Logan and Winn [18] have already established such a con-
nection in a tight-binding language and concluded that
the EMA, in the guise of the single-superchain approxi-
mation [20], provides the simplest approximation that is
consistent with Egs. (19) and (20). Before focusing on
this and arguing the merits of Logan and Winn’s strategy
in developing systematic improvements to the EMA, we
examine some of the aforementioned multiple-scattering
theories.

Roth [23] has provided a summary of a number of the-
ories that have the structure

#(1,2) = pha(1) [5(1,2) +/é<m)(1,3)+(3,2)d(3)] ,

(30)

where G(™)(a, B) is termed the medium propagator. Sep-
arating the diagonal and off-diagonal parts of the scat-
tering path operators 7(1,2) and 7(3,2) [cf. Eq. (11)] we
may show that

Co(1,2)
EMA -
EXACT B

SINGLE SITE +

all other graphs with crossing h,-bonds, but

no correlation connectors between 1 and 2

CORRELATED ., , 4+ o= +
ELYUTIN e v

FIG. 5. Theories that satisfy the nonoverlapping condition
and remain consistent with the OZ formalism.
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7on(1,2) = pie(1) |6 (1,2),)(2)
+ / G, 3)+on(3,2)d(3)] . (31)

Now, with the definition of fI(a,ﬂ) of Eq. (18) it is a
simple matter to show that

[fe()] " &™) ()AL, 2)
= &m(1,2) + / Gt (1,3)pt™) (3) A (3,2)d(3). (32)

This may be reduced to the OZ form (19) if we identify
£.(1) with £(™) (1) and G(™(a, B) with the direct propa-
gator C(a, B).

To check that this is internally consistent we consider
the diagonal part pi(™)(1) of #(1,2), which, by (30),
should satisfy

pt™ (1) = pt‘c(l){l + [é(l, 1)

+/é@mwmmﬁ@n«ﬂﬂmm*,
(33)

Now, since H (a, B) is, by definition, off diagonal in the
scatterer indices, we have from the pseudo-OZ equation
(19) that

0=C_C(1,1) +/6(1,3)p£<'">(3)1?(3,1)d(3), (34)

so that our identification of £(™)(1) and (1) is indeed
consistent.

In Roth’s discussion, the renormalized T' matrix t.(c)
is expressed in terms of U4, the scattering potential (op-
erator) due to the particle o,

te(@) = Do + 9o G1(a)ic(a). (35)

In the present context v, may be written

w? A
Ve = €o(w) 5 (1~ €()]Oa, (36)
where
(r|(:),,|r') = 5(1' - r')@(a - ’r - Ra])v (37)

with a the radius of the scatterer and O(r) a Heaviside
step function.

We note in passing that this depends on frequency w.
In Schrédinger language this means that we are dealing
with an energy-dependent potential. The prime conse-
quence of this is that the system obeys a conservation
law different from that usually encountered for electrons
[51,52]. It is important to preserve this in formulating
a theory for energy transport. This will be discussed in

Sec. IV.
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Defining now G (a) = G4 — Gy allows us to write

te(@) = [bg + 9aGoba + - - [1 + Gl ()ic(e)]
= f(a) + £(a) G} (a)ic(a), (38)

where we identified the bare T' matrix

(@) = B + 96Gobo + -
= [1 = Goba]  a- (39)

This permits a more direct comparison to be made with
the result (20), which implies that G («) should take the
form

Gi(a) = / H (e, 8™ (8)God(B). (40)

Table I summarizes the theories discussed by Roth, viz.,
the QCA [24,25] and its self-consistent generalization
(QCACP) [35,36], the self-consistent approximation of
Schwartz and Ehrenreich [53] (SE), the theory of Ishida
and Yonezawa [50] (IY), and the EMA [22,23].

Clearly the SE and EMA are closest in spirit to the
OZ formalism in that they satisfy Eq. (40) and make ap-
proximations only to ¢ (o, 8). The QCA makes perhaps
the most drastic approximation for G/ (a), so that the T
matrix of a single scatterer is not renormalized. Both this
and its coherent-potential generalization, which replaces
t by the T matrix of a scatterer in a self-consistently de-
termined effective medium, are deficient with respect to
their treatment of the local environment around a given
scatterer. At sufficiently large packing fractions 7, the
presence of short-range order casts doubt on the appli-
cability of a uniform effective medium that abuts on the
boundary of the scatterer. )

The rather cumbersome expression for G () in the IY
approximation may be simplified in the following man-
ner. First [18], let us relabel H(f3,~), which satisfies the
pseudo-OZ equation (19) as H,,(8,7). Now, by defining
a new ﬁ(ﬁ, v) via

H(B,7) = C(8,7) + 92(8,7)[Hm(8,7) — C(B,7)], (41)

we arrive at an equation for G} () that is consistent with
(40). Notice that the expression (41) for H(8,~), taken
together with the IY definition for C (B,7), incorporates
an explicit factor of g2(3,~). Hence, in the case of hard
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spheres, for which g2(8,) = 0 when |Rg — R,| < d, the
nonoverlapping condition (29) is seen to hold for this new
H (B,v). However, the theory is somewhat unsymmetri-
cal since this modified quantity does not enter into the
expression for 7(a, ), but rather H,,(3,v), which does
not satisfy the nonoverlapping condition. In the context
of liquid metals this forces one to modify the formula for
the density of states [28].

Recall that the nonoverlapping condition (29) is im-
portant in practical applications where the angular mo-
mentum decomposition of Eqs. (21)-(28) is generally
employed. Of the above theories, the only one that
meets this requirement while remaining fully consistent
with the OZ formalism is the EMA. This may be seen
most readily by recognizing that the integral appearing
in the right-hand column of Table I may be identified as
H(a,B) — C(a, ). Hence

C(a,B) = g2(a, B)Go + ha(, B)[H(a, B) — C(a, B)].
(42)

Rearranging this and using g2(a, 8) = ha(a, ) + 1, we
may identify an explicit factor of g»(c, 3).

This suggests that a way of amending a theory that
fails to satisfy (29) is to multiply the existing expression
for H (a, B) by g2(a, B). Such “energy-shell” extensions of
the QCA and I'Y have been discussed previously by Singh
and Roth [28] in connection with evaluating the density
of states of a liquid metal via Lloyd’s formula (see also
Schwartz et al. [29]). However, theories of this form are
no longer derivable within the OZ framework and there
is evidence [28,21] that they fail to deal adequately with
the effects of short-range order.

The EMA is widely regarded as one of the most promis-
ing approximations in this respect. It may be considered
as the simplest in a class of theories described by closure
approximations of the form

é(a7ﬂ) = gz(a,ﬂ)éo(a,ﬂ)
+h2(a,,8)[ﬁ(a,,6) - é(av ﬂ)] (43)

All of these obey the nonoverlapping condition and are
consistent with the OZ formalism. Figure 5 contains a
summary of some approximations for Co(c,3). What
we have termed the correlated Elyutin theory was intro-
duced in a TB context by Winn and Logan [54] in an
attempt to recover the correct low-density behavior of
the density of states. A multiple-scattering equivalent

TABLE I. The propagators G (a) and C(a,8) = G™)(a,B) for various theories. Roth [23] uses the initials GKM of the

original authors to denote the QCACP.

Theory Gi(a) C(,B)
QCA 0 g2(a, 8)Go
QCACP= GKM G- Go Go + h2(a, B)G
SE J H(a, B)pt™ (8)God(B) 92(2, 8)Go + ha(e, B) [ H(a,7)pt™ (7)God(7)
IY J €(a, B)pt™ (B) (éo 92(e, B)Go
+ [ H(B,pi™ (1)C(1,0)d(1) ) d(8)
EMA J H(a, B)pt'™ (8)God(B) 92(a, B)Go + hz(, B) [ H(a,7)pt"™ (v)C(,B8)d(7)
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to Elyutin’s original theory [55] is obtained by setting
gZ(aHB) =1

When substituted into (43) it is readily seen that the
exact single-site theory (see Logan and Winn [18]) con-
sists of (a) making the Kirkwood superposition approx-
imation for all g,(1,...,s) with s > 2 and (b) retain-
ing only single-site graphs in o] (o, B), i.e., folded chains
representing recurrent scattering between a given pair of
sites are omitted.

As indicated above, recurrent scattering terms, such
as those incorporated in the correlated Elyutin theory,
are important in the tight-binding context for describing
the behavior at low density. In particular, it is in such a
limit that one expects to observe a metal-insulator tran-
sition. In contrast, for classical waves, unless one has
extremely strong scatterers (see, e.g., the work of van
Tiggelen et al. [9,10,12]), an onset of localization seems
more likely to occur at higher packing fractions. In this
regime the EMA is probably adequate as far as amplitude
properties are concerned. However, its extension to the
calculation of intensity properties does not incorporate
the maximally crossed diagrams, which are expected to
be important for describing localization. Such diagrams
do arise from an energy-conserving description of the in-
tensity Green function based on the correlated Elyutin
theory.

IV. THE INTENSITY GREEN FUNCTION

In the previous sections we have focused on the de-
termination of the average amplitude Green function G.
This yields information about the coherent wave, such
as the effective refractive index and scattering mean free
path, which may be extracted from its behavior in the
long distance limit. As mentioned in the Introduction, it
is more meaningful, at least as regards questions of lo-
calization, to consider the transport mean free path, for
which a knowledge of the two-particle or intensity Green
function (G(z)G(z')) is indispensible. Here z and 2’ de-
note complex frequencies, with infinitesimal imaginary
parts chosen to select out the time-advanced or retarded
Green function.

Since any practical calculation will involve some de-
gree of approximation, it is important to ensure that this
is consistent with that introduced for the one-particle
Green function, in the sense that the resulting theory
obeys the necessary conservation laws.

For the case of Schrodinger waves (e.g., electrons) pre-
scriptions for (G(z)G(z')) consistent with the QCACP
and the EMA have been developed by Roth and Singh
[31] and by Itoh et al. [56-58,32-34]. Since classical waves
exhibit a different energy conservation law, it is of inter-
est to see to what extent these approaches may be applied
to the present problem.

We choose to employ the “variational” method intro-
duced by Roth and Singh [31] rather than the (equiv-
alent) topological analysis of Itoh et al. [56]. In this,
(G(2)G(2")) is identified with the variation §G(z,z’) ob-
tained via the following procedure.

Given a theory for the average amplitude Green func-
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tion G(z), we make the variation Go(z) — Go(z) +
0Go(z,2'), where

6Go(z,2') = Go(2)Go(2'). (44)

All quantities to the right of such variations are to be
evaluated at frequency 2’.
In this way, starting with Eq. (5), we find

8G(2,2') = 8Go(2,2') + 8Go(z,2')T(2")Go(2')
+Go(2)8T'(2,2')Go(2')
+Go(2)T(2)8Go(z, 2")
= G(2)G(2') + Go(2)[6T (2, )

—T(2)Go(2)Go(2")T(2')]Go(2'). (45)
From the equation for the random T matrix 7(z),
T(2) = V(2)[1 + Go(2) T (2)], (46)

where the total potential V(z) = > o Ba(2), it is a simple
matter to show that
6T(2,2") = (T(2)Go(2)Go () T (")), (47)

so that, in the absence of correlations, §G reduces to the
product of two average Green functions (as it should).

Energy conservation may be expressed by way of
an identity connecting (G(z)G(z')) and the one-particle
Green functions [59]. This is readily derived by consid-
ering the unaveraged Green function

G(2) = Go(2) + Go(2)V (2)G(2). (48)
Rewriting this in the form
[G31(z) = V(2))6(2) = 1 (49)

and multiplying both sides by f/(z’ )Q ('), we arrive at
V(2)6(2) G5 (2) - V(2)]6(2) = V()G ().  (50)

Now, subtracting the equation obtained by interchanging
z and 2/, it follows that

V(z)6(2)G5 1 (2)6(2) - V(2)6(2) G5 ()G (<)

=V()6(z") = V(2)6(2). (51)

In the case of energy-independent potentials the V’s can-
cel and, after averaging, we find

(6(2)6(x)) =G () - Ga () HG(2) — G(2)- (52)

We may obtain a similar expression for potentials of the

form
V(2) = ¢(2)Vo, (53)

which includes those of interest here [see Eq. (36)], by
defining the quantities
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6(2) = 9(2)6(2),
GP(Z) = ¢(2)Go(z),
G(z) = ¢(2)G(2), (54)
so that

G(E() =[Gy () - Gy ()M E) - G()]. (55)

It is helpful to rewrite this in terms of §7'(z,2') and the
average T matrices. Using (5) it is a simple matter to
deduce that

5T(z2) =[Gy () = Gy ()] F(2) (], (56)
where we define
T(z) = T(2) /(). (57)

The question is now whether JT(z, 2'), as derived via the
procedure of Roth and Singh and Itoh et al., satisfies
56).

( S)ince T = J7#(1,2)d(1)d(2), we may formulate this
question in terms of 67(1,2). Recall that for an OZ-
compatible theory this quantity satisfies an equation of
the form (30), from which we may deduce

67(1,2) = / #(1,3)80m)=1(3) p=15(m) (3)§(m)—1(3)
x#'(3,2)d(3)
+ / 7(1,3)8C(3,4)7'(4,2)d(3)d(4).  (58)

Here, for convenience, we have introduced a notation in

which a prime denotes evaluation at complex frequency

Zl

By writing 7(1,2) = [¢~1#(1,3)8(3,2)d(3), with
8(3,2) a Dirac delta function, and exploiting the fact that

2(m)

/[5(1,4)p—12 ) — E(1, 4134, 3)d(4) = 601, 3),

(59)
where 5(1,4) = ¢C‘(1,4), we find for A7(1, 2) = 7(1,2)—
#(1,2),
s N a(m)—-1 —1 4 Hm)
AR(1,2) = /T(1,3)t @3)p1ai " (3)

a(m)'—1

xt (3)% (3,2)d(3)
+ / #(1,3)AC(3,4)% (4,2)d(3)d(4).  (60)

Comparing Egs. (58) and (60), we see that the conser-
vation law (56) will be satisfied as long as

~(m) 2a—1 a2 ar—1
At (a) = Gy AGoG, 6™ (a), (61a)
2 2—1 2 ar—1
AC(a,B) = ¢p¢'Gy AGoGy (e, B). (61b)

In view of the fact that, within the OZ formalism, a
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given theory is fully specified via the closure relation, we
might expect to be able to express the conservatim} law as
a single identity involving the direct propagator C(a, 3).
For this, we need to demonstrate (61a) holds provided
that (61b) is true.

Itoh et al. [32-34] define the quantity 7(a) (not to be
confused with the packing fraction) in terms of which

i (a) = i(a)[1 + A(a)i™ (a)]. (62)

From the discussion of Sec. III we see that, for an OZ-
compatible theory

(@) = [ H(@£)ot™ (8)God(6). (63)
Using the fact that §#(a) = #(a)GoG)i'(a), we have

5™ (a) = £ () [Go Gy + 87i(a)[E™ (a).  (64)

Clearly now, satisfaction of (61a) is attained only if
= ~ ! o1 12'_1 % 31 -
An(a) = ¢ij(a) — ¢'i (o) = ¢8'Gy AGoG, §i)(a).
(65)
From (63) it follows that this relies on the identity [with
AH(1,2) similarly defined]
2 2—1 2 ar—1
AH(1,2) = ¢¢'Gy, AGoG, §H(1,2). (66)

Analogous arguments, based on the OZ relation (19),
may be used to establish that this requires satisfaction of
both (61a) and (61b). However, we have already deter-
mined that (61a) relies on (66). By a process of iteration
it follows, from a term-by-term comparison, that, as ex-
pected, we need only demonstrate that (61b) holds.

For a given theory this is determined by examining the
closure relation, which for the EMA leads to

6C(1,2) = g2(1,2)8Go + phz(l,z){/ééu,a)
x£(™)(3)H'(3,2)d(3)
+ / C(1,3)61™ (3)H'(3,2)d(3)

+ / é(1,3)t‘<m>’(3)51§r'(3,z)d(a)}, (67)
AC(1,2) = g2(1,2)AGo +ph2(1,2){/A5’(1,3)

<™ (3) ' (3,2)d(3)
+/5‘(1,3)A§(m)(3)ﬁ'(3,2)d(3)

+ / 5(1,3)§(m)(3)AI§r(3,2)d(3)}. (68)
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2 , 2(m) A
Expanding all occurrences of AH, §H, At , and (™)

in terms of AC and 6C and iterating the resulting equa-
tions readily confirms that Eq. (61b) holds.

The same may also be verified for the correlated
Elyutin theory. As mentioned in Sec. III, this theory
may be of particular relevance for studying localization.
This may be ascertained from a diagrammatic analysis
(cf. Itoh and Watabe [57]), which reveals that it incor-
porates maximally crossed diagrams, known to be impor-
tant in that context.

For the EMA Itoh et al. [32-34] have considered in
some detail how the above formalism may be employed
in calculating the electronic conductivity. In particular,
they have shown how the off-shell parts may be par-
tially decoupled from the rest of the problem. For wave
transport the quantity of interest is @, p/(q,w,Aw) =
(G(p+4a/2,w+i0+ Aw/2)G(p' — q/2,w —i0 — Aw/2)).
By examining its asymptotic behavior in the limit
Aw, g — 0, we may extract a diffusion constant [59]. The
details of how this may be achieved within the present
formalism will be considered elsewhere.

V. CONCLUSIONS

In this paper we have written down a general formal-
ism within which one may develop theories for both the
amplitude and intensity Green functions in such a way
as to guarantee energy conservation. Previous work in
this area has often been achieved by neglecting positional
correlations among the scatterers [9,10,12] or by approx-
imating them in a rather ad hoc fashion [60-63]. The
advantage of the present formalism is that it allows the
effects of multiple scattering and of scatterer correlations
to be incorporated on an equal footing.
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Within this framework the EMA is identified as the
simplest in a class of theories for the amplitude Green
function G that preserve the physical requirement that
the scatterers should not overlap. This enables a decou-
pling of the on- and off-shell parts of G. Higher-order
approximations within this class permit the systematic
inclusion of recurrent scattering terms. Similar terms
have been introduced in the context of point scatterer
models in an effort to study the effects of dependent scat-
tering. Where the scattering cross section o, of the indi-
vidual scatterers greatly exceeds their geometrical cross
section wa2, the regime of physical interest is shifted to a
sufficiently low packing fraction n that the neglect of po-
sitional correlations is likely to be justifiable. However,
given typical values of o, ~ 6ma2, for dielectric scatter-
ers, such correlations are likely to be important if one is
to make quantitative comparisons with experiment. The
present framework enables one to incorporate these and
the recurrent scattering terms on an equal basis. An in-
vestigation of their relative importance will be given in a
future paper.

In addition, as will be shown in a future paper, the
analogy with liquid-state theory may be exploited fur-
ther for isotropic scatterers to obtain analytical results
for a simple (step-function) model pair correlation func-
tion gz(c,3). As will also be demonstrated, the meth-
ods involved in deriving such a solution suggest slightly
modified closure approximations that may be used in nu-
merical work when more realistic forms for gz(a,3) are
adopted.
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